where INNOVATION
is created


Physical Optics and Biophotonics Group
Institute of Physical Chemistry PAS

Research


The research in our group can be seen as a perfect interplay between physics, biology and chemistry. We are focusing on developing imaging techniques and using them in many biological and chemical systems. Uniqueness of our approach is using not only amplitude of the light, but also its phase in order to develop new, top class imaging systems. Optical Coherence Tomography is the great example of such method (see movie below of long-range OCT volume of human eye). Furthermore, we are implementing the innovative method for imaging distortion removal ― STOC (Spatio Temporal Optical Coherence manipulation), that have a potential to largely increase the quality of imaging through opaque layers, such as skin.

All these projects are aimed to bring to humanity a new non-invasive imaging techniques, that will make our life longer, better and with more understanding of the nature.


Principal Investigator


Prof. Maciej Wojtkowski is a renowned scientist active in the field of biomedical imaging. His research interests include optical coherence imaging and microscopy applied to biomedical imaging. He has a pioneering contribution to design and development of ultra-high speed Optical Coherence Tomography (OCT), which is commonly used in ophthalmic and cardiologic diagnosis. Multiple OCT prototypes developed by Prof. Wojtkowski served as the basis for many instruments in ophthalmology clinics across the World.

Maciej Wojtkowski authored more than 160 publications, including 90 full papers in peer reviewed journals (Google Scholar and Research Gate). During his academic career Maciej Wojtkowski gained international experience, while working at the Massachusetts Institute of Technology, Cambridge, MA (USA) and New England Eye Center, Boston, MA (USA). He was also on research internships in Vienna University and University of Kent.

Currently, he is the Head of the Department of Physical Chemistry of Biological Systems at the Institute of Physical Chemistry of Polish Academy of Sciences. He won the international competition for the ERA Chair holder in the CREATE project (EU HORIZON 2020).




Publications


  1. E. Auksorius, D. Borycki, M. Wojtkowski, Multimode fiber enables control of spatial coherence in Fourier-domain full-field optical coherence tomography for in vivo corneal imaging, Opt. Lett., Vol. 46, Issue 6, pp. 1413-1416 (2021)
  2. C. Gorecki, S. Bargiel “MEMS scanning mirrors for Optical Coherence Tomography”, Photonics 2021, 8(1), 6, https://doi.org/10.3390/photonics8010006
  3. S. Samaei, P. Sawosz, M. Kacprzak, Z. Pastuszak, D. Borycki, Adam Liebert, Time-domain diffuse correlation spectroscopy (TD-DCS) for noninvasive, depth-dependent blood flow quantification in human tissue in vivo, Sci Rep 11, 1817 (2021)
  4. W. Liu, R. Qian, S. Xu, P. Konda, J. Jonsson, M. Harfouche, D. Borycki, C. Cooke, E. Berrocal, Q. Dai, H. Wang, R. Horstmeyer, Fast and sensitive diffuse correlation spectroscopy with highly parallelized single photon detection, APL Photonics, 6(2), 026106
  1. Dawid Borycki, Egidijus Auksorius, Piotr Węgrzyn, and Maciej Wojtkowski, Computational aberration correction in spatiotemporal optical coherence (STOC) imaging, Optics Letters, 2020,  Vol. 45 Issue 6, pp. 1293-1296.
  2. Egidijus Auksorius, Dawid Borycki, Patrycjusz Stremplewski, Kamil Liżewski, Slawomir Tomczewski, Paulina Niedźwiedziuk, Bartosz L Sikorski, Maciej Wojtkowski, In vivo imaging of human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography, Biomedical Optics Express, 2020, Vol. 11,  2849-2865.
  3. Alejandra Consejo, Jędrzej Solarski, Karol Karnowski, Jos J Rozema, Maciej Wojtkowski , D. Robert Iskander, Keratoconus Detection Based on a Single Scheimpflug Image, Translational Vision Science and Technology, 2020; 9(7):36.
  4. Alejandra Consejo , David Alonso-Caneiro, Maciej Wojtkowski and Stephen J Vincent, Corneal tissue properties following scleral lens wear using Scheimpflug imaging, Ophthalmic and Physiological Optics, 2020; 40(5):595-606.
  5. H. Dolezyczek, M. Rapolu, P. Niedzwiedziuk, K. Karnowski, D. Borycki, J. Dzwonek, G. Wilczynski, M. Malinowska, and M. Wojtkowski, Longitudinal in-vivo OCM imaging of glioblastoma development in the mouse brain, Biomed. Opt. Express Vol 11, 5003-5016 (2020).
  6. Marcin Marzejon, Łukasz Kornaszewski, Jakub Bogusławski, Piotr Ciąćka, Miłosz Martynow, Grażyna Palczewska, Sebastian Maćkowski, Krzysztof Palczewski, Maciej Wojtkowski, Katarzyna Komar, Two-photon microperimetry with picosecond pulse, Biomed. Opt. Express, Vol 12(1), 462-479 (2020).
  7. A. Curatolo, J. S. Birkenfeld, E. Martinez-Enriquez, J. A. Germann, G. Muralidharan, J. Palací, D. Pascual, A. Eliasy, A. Abass, J. Solarski, K. Karnowski, Maciej Wojtkowski, Ahmed Elsheikh, and Susana Marcos, Multi-meridian corneal imaging of air-puff induced deformation for improved detection of biomechanical abnormalities, Biomed. Opt. Express, Vol 11, 6337-6355.
  8. Dorota Stachowiak, Jakub Bogusławski, Aleksander Głuszek, Zbigniew Łaszczych, Maciej Wojtkowski, Grzegorz Soboń, Frequency-doubled femtosecond Er-doped fiber laser for two-photon excited fluorescence imaging, Biomedical Optics Express, 2020, Vol. 8, 4431-4442.
  9. Grazyna Palczewska, Jakub Boguslawski, Patrycjusz Stremplewski, Lukasz Kornaszewski, Jianye Zhang, Zhiqian Dong, Xiao-Xuan Liang, Enrico Gratton, Alfred Vogel, Maciej Wojtkowski, Krzysztof Palczewski, Noninvasive two-photon optical biopsy of retinal fluorophores, Proceedings of the National Academy of Sciences, 2020, Vol. 117, 22532-22543.
  10. H. Dolezyczek, S. Tamborski, P. Majka,  M. Wojtkowski, G. Wilczynski, M. Malinowska, M. Szkulmowski "In vivo brain imaging with multimodal optical coherence microscopy in a mouse model of thromboembolic photochemical stroke," Neurophoton. 7(1), 015002 (2020), doi: 10.1117/1.NPh.7.1.015002.
  11. Natalia Pacocha, Jakub Bogusławski, Michał Horka, Karol Makuch, Kamil Liżewski, Maciej Wojtkowski, Piotr Garstecki,  High-Throughput Monitoring of Bacterial Cell Density in Nanoliter Droplets: Label-Free Detection of Unmodified Gram-Positive and Gram-Negative Bacteria, Analytical Chemistry, 2020; 10.1021/acs.analchem.0c03408.
  12. Egidijus Auksorius, Light-efficient beamsplitter for Fourier-domain full-field optical coherence tomography, Optics Letters, 2020, Vol. 45, 1240-1243
  13. Egidijus Auksorius, A Claude Boccara, High-throughput dark-field full-field optical coherence tomography, Optics Letters, 2020, Vol. 45, 455-458
  14. Egidijus Auksorius, Kiran Raja, Raghavendra Topcu, Berkay, Ramachandra, Christoph Busch, Claude Boccara, Compact and Mobile Full-Field Optical Coherence Tomography Sensor for Subsurface Fingerprint Imaging, IEEE-Access, 2020, Vol. 8, 15194-15204
  15. Joséphine Behaegel, Alejandra Consejo Kristien Wouters, Carina Koppen, Joost De Cock, Sorcha Ní Dhubhghaill, Development and Validation of an Open-Source Grading Tool for Outcome Assessment in Limbal Stem Cell Treatment, Cornea, 2020; 39(6):787-792
  16. Ikram Issarti, Alejandra Consejo, Marta Jimenez-Garcíaa, Elke O. Kreps, Carina Koppen, Jos J. Rozema, Logistic index for keratoconus detection and severity scoring (Logik), Computers in Biology and Medicine  2020; 122: 103809
  17. Marcin Wierzchowski, Łukasz Sobotta, Dawid Łażewski, Piotr Kasprzycki, Piotr Fita, Tomasz Goslinski, Spectroscopic and quantum chemical study of phthalocyanines with 1, 4, 7-trioxanonyl moieties, Journal of Molecular Structure, 2020, Vol. 1203, pp. 127371
  18. Q Li, K Karnowski, G Untracht, PB Noble, B Cense, M Villiger, and DD Sampson, Vectorial birefringence imaging by optical coherence microscopy for assessing fibrillar microstructures in the cornea and limbus, Biomed. Opt. Express 11, 1122-1138
  19. Gong, P,  Li, Q,  Wang, Q,  Karnowski, K,  Sampson, DD, Jones matrix-based speckle-decorrelation angiography using polarization-sensitive optical coherence tomography, J Biophotonics 2020;e202000007
  20. K. Karnowski, Q. Li, A. Poudyal, M. Villiger, C. S. Farah, and D. D. Sampson, Influence of tissue fixation on depth-resolved birefringence of oral cavity tissue samples, Journal of Biomedical Optics, Vol 25(9), 096003
  21. Piotr Kasprzycki, Przemysław Kopycki, Arkadiusz Listkowski, Aleksander Gorski, Czesław Radzewicz, David JS Birch, Jacek Waluk, Piotr Fita, Influence of local microenvironment on the double hydrogen transfer in porphycene, Physical Chemistry Chemical Physics, 2020, Vol. 22, pp. 17117-17128
  22. Stefaan Van Nuffel, Alejandra Consejo, Carina Koppen, Elke O. Kreps, The corneoscleral shape in keratoconus patients with and without specialty lens wear, Contact Lens and Anterior Eye, 2020; in press
  23. Marta Jiménez-García, Sorcha Ní Dhubhghaill, Alejandra Consejo, Sarah Hershko, Carina Koppen,  Jos J. Rozema, Scheimpflug Densitometry in Keratoconus: A New Method of Visualizing the Cone, Cornea, 2020; in press doi: 10.1097/ICO.0000000000002458
  24. Alejandra Consejo,  Marta Jiménez-García, Jos J. Rozema, Age-Related Corneal Transparency Changes Evaluated With an Alternative Method to Corneal Densitometry, Cornea 2020; in press doi: 10.1097/ICO.0000000000002511
  25. Siska E. Dhaese, Elke O. Kreps, Alejandra Consejo  Scleral shape and its correlation with corneal parameters in keratoconus, Contact Lens and Anterior Eye 2020; in press
  26. Eva Vanhonsebrouck Alejandra Consejo Paul J. Coucke Bart P. Leroy,  Elke O. Kreps, The corneoscleral shape in Marfan syndrome, Acta Ophthalmologica, 2020; in press
  27. Q. Li, K. Karnowski, G. Untracht, P. B. Noble, B. Cense, M. Villiger, and D. D. Sampson, Vectorial birefringence imaging by optical coherence microscopy for assessing fibrillar microstructures in the cornea and limbus, Biomed. Opt. Express 11, 1122-1138 (2020)
  1. E. Auksorius, D. Borycki, and M. Wojtkowski, Crosstalk-free volumetric in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography, Biomed. Opt. Express 10, 6390-6407 (2019)
  2. D. Borycki, M. Hamkało, M. Nowakowski, M. Szkulmowski, and M. Wojtkowski, Spatiotemporal optical coherence (STOC) manipulation suppresses coherent cross-talk in full-field swept-source optical coherence tomography, Biomedical Optics Express, 10(3), 2019
  3. D. Ruminski, G. Palczewska, M. Nowakowski, A. Zielinska, V. J. Kefalov, K. Komar, K. Palczewski, and M. Wojtkowski, Two-photon microperimetry: sensitivity of human photoreceptors to infrared light, Biomed Opt Express 10, 4551-4567 (2019)
  4. A. Zielińska, K. Kiluk, M. Wojtkowski, and K. Komar, System for psychophysical measurements of two-photon vision, Photonics Letters of Poland, 11(1), 2019
  5. E. Maczynska, J. Rzeszewska-Zamiara, A. Jimenez Villar, M. Wojtkowski, B. J. Kaluzny, and I. Grulkowski, Air-Puff-Induced Dynamics of Ocular Components Measured with Optical Biometry, Invest Ophthalmol Vis Sci 60, 1979-1986 (2019)
  6. E. Maczyńska, K. Karnowski, K. Szulżycki, M. Malinowska, H. Dolężyczek, A. Cichański, M. Wojtkowski, B. Kałużny, and I. Grulkowski, Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis, Journal of Biophotonics, 12(2), 2019
  7. A. Jiménez-villar, E. Mączyńska, A. Chichański, M. Wojtkowski, B. Kałużny, and I. Grulkowski, High-speed OCT-based ocular biometer combined with an air-puff system for determination of induced retraction-free eye dynamics, Biomedical Optics Express 10(7), 2019
  8. F. Vinberg, G. Palczewska, J. Zhang, K. Komar, M. Wojtkowski, V. J. Kefalov, and K. Palczewski, "Sensitivity of Mammalian Cone Photoreceptors to Infrared Light," Neuroscience 416, 100-108 (2019).
  9. A. Consejo, K. Glawdecka, K. Karnowski, J. Solarski, J. J. Rozema, M. Wojtkowski, and D. R. Iskander, "Corneal Properties of Keratoconus Based on Scheimpflug Light Intensity Distribution," Invest Ophthalmol Vis Sci 60, 3197-3203 (2019)
  10. P. Stremplewski, E. Auksorius, P. Wnuk, Ł. Kozoń, P. Garstecki, and M. Wojtkowski, In vivo volumetric imaging by crosstalk-free full-field OCT, Optica, 6(5), 2019
  11. J. Bogusławski, G. Soboń, R. Zybała, J. Sotor, and P. Garstecki, Towards an optimum saturable absorber forthe multi-gigahertz harmonic mode lockingof fiber lasers, Photonics Research, 7(9), 1094-1100, 2019
  12. M. Wojtkowski, P. Stremplewski, E. Auksorius, and D. Borycki, Spatio-Temporal Optical Coherence Imaging – a new tool for in vivo microscopy, Photonics Letters of Poland, 12(2), 2019
  1. P. Stremplewski, M. Nowakowski, D. Borycki, M. Wojtkowski, Fast method of speckle suppression for reflection phase microscopy, Letters of Poland 10 (4), 118-120.
  2. D. Borycki, O. Kholiqov, V.J. Srinivasan, Correlation gating quantifies the optical properties of dynamic media in transmission, Optics Letters, 43(23), 5881-5884.
  3. M. Wojtkowski, M. Jędrzejewska-Szczerska, D. Borycki, Non invasive optical cellular imaging in humans, Photonics Letters of Poland 10 (3), 60
  4. M. Rapolu, P. Niedźwiedziuk, D. Borycki, P. Wnuk, M. Wojtkowski, Enhancing microvasculature maps for Optical Coherence Tomography Angiography (OCT-A), Photonics Letters of Poland 10 (3), 61-63.
  5. G. Palczewska, P. Stremplewski, S. Suh, N. Alexander, D. Salom, Z. Dong, D. Ruminski, E. H. Choi, A. E. Sears, T. S. Kern, M. Wojtkowski, and K. Palczewski, Two-photon imaging of the mammalian retina with ultrafast pulsing laser, JCI Insight. 2018;3(17)
  1. P. Ossowski, M. Wojtkowski and P. Munro „Classification of biological micro-objects using optical coherence tomography: in silico study”, Biomedical Optics Express, 8(8), 3606-3626, 2017
  2. J. F. de Boer, R. Leitgeb and M. Wojtkowski „25 years of Optical Coherence Tomography: the paradigm shift in sensitivity and speed provided by Fourier Domain OCT”, Biomedical Optics Express, 8 (7), 3248-3240, 2017
  3. K. Karnowski, A. Ajduk, B. Wieloch, Sz.Tamborski, K. Krawiec, M. Wojtkowski, M. Szkulmowski, „Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos”, Sci.Rep. 7, 4165, 2017
  4. P. Artal, S. Manzanera, K. Komar, A. Gambin-Regadera,, M. Wojtkowski, “Visual acuity in two-photon infrared vision” Optica, 4 (12), 1488-1491, 2017
  1. D. Alonso-Caneiro. S. A. Read, S. J. Vincent, M. J. Collins,and M. Wojtkowski “Tissue thickness calculation in ocular optical coherence tomography” Biomedical Optics Express 7(2): 629-645, 2016
  2. N. S. Alexander, G. Palczewska, P. Stremplewski, M. Wojtkowski, T. S. Kern and K. Palczewski, "Image registration and averaging of low laser power two-photon fluorescence images of mouse retina”, Biomedical Optics Express 7(7), 2671-2691, 2016
  3. S. Tamborski, H.C. Lyu, H. Dolezyczek, M. Malinowska, G. Wilczyński, D. Szlag, T. Lasser, M. Wojtkowski, M. Szkulmowski, „Extended-focus optical coherence microscopy for high-resolution imaging of the murine brain.”, Biomed. Opt. Express 7( 11), 4400-4414, 2016
  4. M. Szkulmowski, S. Tamborski, M. Wojtkowski, “Spectrometer calibration for spectroscopic Fourier domain optical coherence tomography.”, Biomed. Opt. Express 7 (12), 5042-5054, 2016
  1. J. K. Nowak, I. Grulkowski, K. Karnowski, M. Wojtkowski, J. Walkowiak, “Optical Coherence Tomography of the Labial Salivary Glands Reveals Age-Related Differences in Women” Clinical and Translational Science vol 8 (6) , 717-721. 2015
  2. P. Ossowski, A. Raiter-Smiljanic, A. Szkulmowska, D. Bukowska, M. Wiese, L. Derzsi, A. Eljaszewicz, P. Garstecki and M. Wojtkowski „Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup”, Optics Express 23(21): 27724- 27738, 2015
  3. S. Kolenderska, G. Wilczyński, and M. Wojtkowski “ Blue-light Fourier-domain optical-coherence microscopy with linear k-sampling using second-harmonic generation”, Optics Letters 40(15), 3540-3543. 2015
  4. P. Stremplewski, K. Komar, K. Palczewski, M. Wojtkowski, and G. Palczewska "Periscope for noninvasive two-photon imaging of murine retina in vivo”, Biomedical Optics Express 6(9), 3352-3361. 2015
  5. D. Ruminski, B. L. Sikorski, D. Bukowska, M. Szkulmowski, K. Krawiec, G. Malukiewicz, L. Bieganowski, M. Wojtkowski, „OCT angiography by absolute intensity difference applied to normal and diseased human retinas”. Biomedical Optics Express. 6(8): 2738- 2754. 2015
  6. T. Butler, S. Slepneva, B. O'Shaughnessy, B. Kelleher, D. Goulding, S.P. Hegarty, H.C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, "Single shot, time-resolved measurement of the coherence properties of OCT swept source lasers". Optics Letters. 40(10):2277-2280. 2015
  7. J. K. Nowak, I. Grulkowski, K. Karnowski, M. Wojtkowski, and J. Walkowiak, "Optical Coherence Tomography Identifies Lower Labial Salivary Gland Surface Density in Cystic Fibrosis". PLoS One. 10(1). 2015

Team Members


Let's Get In Touch!


Our lab is based at the Institute of Physical Chemistry of Polish Academy of Sciences in Warsaw. Located near the city centre, we are within short walking distance from the Warsaw West train station and easily reached by numerous public transport lines (please refer to this app).

From Warsaw Chopin Airport (WAW), the S2/S3 train will take you to Warsaw West train station in 20 min, which is 15 min walking distance from IPC PAS. As alternative, take the 103 bus and get off at the Krzyżanowskiego stop, right in front of the Płocka entrance to the Institute.

Our address is Kasprzaka 44/52 (building 7A). Alternatively, search Google Maps for "Kasprzaka 44/52, Warsaw" or use the embedded map below.